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ABSTRACT 
 
We propose inferring functional connectivity between brain 
regions by examining the spatial modulation of the blood 
oxygen level dependent (BOLD) signals within brain regions 
of interest (ROIs). This is motivated by our previous work, 
where the spatial distribution of BOLD signals within an 
ROI was found to be modulated by task. Applying replicator 
dynamics to our proposed spatial feature time courses on 
real functional magnetic resonance imaging (fMRI) data 
detected task-related changes in the composition of the 
brain’s functional networks, whereas using classical mean 
intensity features resulted in little changes being detected. 
Thus, our results suggest that intensity is not the only co-
activating feature in fMRI data. Instead, spatial modulations 
may also be used for inferring functional connectivity. 
 

Index Terms— fMRI, functional connectivity, spatial 
modulation, replicator dynamics, region of interest (ROI) 
 

1. INTRODUCTION 
 
In this work, we study the functional integration of the brain 
using functional magnetic resonance imaging (fMRI). 
Functional integration refers to the interactions between 
distinct spatial locations in the brain, and can be 
characterized in terms of functional and effective 
connectivity [1]. Functional connectivity corresponds to the 
“temporal correlations between spatially remote 
neurophysiological events”, whereas effective connectivity 
is “the influence one neuronal system exerts over another” 
[1]. In the current study, we focus on examining functional 
connectivity for detecting task-related brain networks, which 
helps guide the selection of regions of interest (ROIs) that 
are sensible for subsequent effective connectivity analysis. 

Functional connectivity can be examined at either the 
voxel or ROI level. At the voxel level, principal component 
analysis (PCA) or variants thereof is, by far, the most 
commonly used approach [2, 3]. PCA decomposes the fMRI 
signals into a set of orthogonal modes with the first mode 
corresponding to the most correlated set of voxels and 

subsequent modes relating to sets of voxels with decreasing 
degree of correlation. Voxel level approaches have been 
applied to study different functional brain properties such as 
resting state connectivity [4], but complications arise when 
group inferences are to be made due to inter-subject 
variability in brain shapes, brain sizes, and subject’s 
orientation in the scanner. To generate voxel correspondence 
across subjects, each subject’s brain has to be warped onto a 
common template, but warping is prone to mis-registration 
errors [5]. To avoid spatial warping, the alternative 
approach, as adopted in this paper, is to specify ROIs and 
examine statistical measures of regional activation.  

Inferring functional connectivity between brain regions 
requires defining a feature to represent the response of each 
ROI. Traditionally, mean intensity time courses averaged 
over an ROI were used [6]. Such representation assumes that 
only the intensity of blood oxygen level dependent (BOLD) 
signals is modulated by task. However, as shown in our 
previous work [7], the distribution of BOLD signals within 
an ROI is also spatially modulated by task. Thus, analyzing 
connectivity with spatial features may elucidate brain 
networks that are undetected by mean intensity measures.  

In this paper, we propose characterizing the modulations 
in spatial variance of BOLD signals within different ROIs to 
infer functional connectivity between brain regions. To 
identify the functional networks in the brain, we employ 
replicator dynamics, which has previously been applied to 
functional neuroimaging by Lohmann and Bohn [8] as well 
as Neurmann et al. [9, 10]. Replicator dynamics is a well 
known concept that originated from theoretical biology for 
modeling the evolution of self-replicating interacting 
species, where each species is associated with a fitness 
value, and only the fittest species survives over time [11]. In 
the present context, brain regions play the role of interacting 
species and the correlation between the regions is the fitness. 
Thereby, applying replicator dynamics will find the brain 
regions that exhibit the highest degree of covariance. We 
note an important property of replicator dynamics is that it 
ensures each ROI within a detected network is closely 
connected to all other ROIs in the network, which is not 
guaranteed by methods like clustering or PCA [10].  
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2. MATERIALS 
 
After obtaining informed consent, fMRI data were collected 
from 10 healthy subjects performing a right-handed motor 
task that involved squeezing a bulb with sufficient pressure 
such that a black horizontal bar shown on a screen was kept 
within an undulating pathway (Fig. 1(a)).  
  

 
 

(a) (b) 
Fig. 1. Experimental task and stimulus timing. (a) Subjects were 
required to keep the side of the black bar on the gray path. (b) R = 
rest, Slow, Med, and Fast = stimulus at 0.25, 0.5, and 0.75 Hz.  
 

The pathway remains straight during rest periods and 
becomes sinusoidal with a frequency of 0.25 Hz (slow), 0.5 
Hz (medium) or 0.75 Hz (fast) at time of stimulus. Each run 
lasted 260 s, consisting of a 20 s rest period at the beginning 
and end, 6 stimuli of 20 s duration in the order shown in Fig. 
1(b), and a 20 s rest period between the stimuli. 
 
2.1. fMRI data acquisition 
 
Functional MRI was performed on a Philips Gyroscan Intera 
3.0 T scanner (Philips, Best, Netherlands) equipped with a 
head-coil. We collected echo-planar (EPI) T2*-weighted 
images with BOLD contrast. Scanning parameters were: 
repetition time 1985 ms, echo time 3.7 ms, flip angle 90°, 
field of view (FOV) 216×143×240 mm, in plane resolution 
128×128 pixels, pixel size 1.9×1.9 mm. Each functional run 
lasted 4 minutes where 36 axial slices of 3 mm thickness 
were collected in each volume, with a gap thickness of 1 
mm. We selected slices to cover the dorsal surface of the 
brain and included the cerebellum ventrally. A high 
resolution three dimensional (3D) T1-weighted image 
consisting of 170 axial slices was acquired for the whole 
brain to facilitate anatomical localization of activation. 

 
2.2. fMRI preprocessing 
 
The acquired fMRI data was preprocessed for each subject, 
using Brain Voyager’s (Brain Innovation B.V.) trilinear 
interpolation for 3D motion correction and sinc interpolation 
for slice time correction. Further motion correction was 
performed using motion corrected independent component 
analysis (MCICA) [12]. To correct for temporal 
autocorrelations, each voxel’s intensity time course was 
high-pass filtered at 0.02 Hz (paradigm frequency being 
0.025 Hz) with the residual autocorrelations modeled as an 
autoregressive AR(1) process, as in SPM2 [1]. We note that 
no spatial warping and smoothing were performed. 

The Brain Extraction Tool (BET) in MRIcro [13] was 
used to strip off the skull of the anatomical and first 
functional image volume in each run to enable more accurate 

alignment of the functional and anatomical scans. Custom 
scripts to co-register the anatomical and functional images 
were generated using the Amira software (Mercury 
Computer Systems, San Diego, USA).  

Sixteen motor-related ROIs were manually drawn on 
each unwarped structural scan using Amira. The ROIs were 
drawn separately in each hemisphere, based upon anatomical 
landmarks and guided by a neurological atlas [14]. ROIs 
included: putamen, caudate, thalamus, cerebellum, primary 
motor cortex (M1), supplementary motor area (SMA), 
prefrontal cortex (PFC), and anterior cingulated cortex 
(ACC). The labels on the segmented anatomical scans were 
resliced at the fMRI resolution. The raw time courses of the 
voxels within each ROI were then extracted for analysis. 

 
3. METHODS 

 
Our proposed network detection framework involves first 
extracting a spatial feature time course from the BOLD 
signal within each ROI. Pairwise correlations between the 
ROI spatial feature time courses are then calculated after 
which replicator dynamics [8] is applied to the mean 
correlation matrix (averaged over subjects) to identify brain 
networks that are common across subjects. 

 
3.1. BOLD spatial feature time courses 
 
In our previous work [7], we used 3D moment descriptors to 
characterize the spatial modulation of BOLD signals within 
an ROI, and demonstrated that such modulation is not 
random, but in fact task-related. In this paper, we are 
extending the application of 3D moment descriptors to 
examine functional connectivity between brain regions. 3D 
moment descriptors are based on centralized 3D moments:  
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where p + q + r is the order of the moment, (x,y,z) are the 
coordinates of a voxel, (x,y,z,t) is the intensity of a voxel 
located at (x,y,z) inside a given ROI at time t, and x , y , and 

z  are the centroid coordinates of (x,y,z,t). To untangle the 
effect of amplitude changes, (x,y,z,t) is normalized such 
that the intensity values of the voxels within the ROI sum up 
to one at every time point t. This step ensures that the mean 
ROI intensity does not change with time. Thus, any detected 
modulations in the spatial feature will be purely due to 
spatial changes in the BOLD signal. In this study, we 
focused on a single 2nd order 3D moment descriptor that 
characterizes spatial variance [15]: 

)()()()( 0020202001 ttttJ μμμ ++=  (2) 
To compare with the results obtained using J1(t), the 
traditionally used mean intensity time courses, I(t), for each 
ROI of a given subject is also calculated by averaging the 
unnormalized intensities within the ROI at every time point. 
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3.2. Connectivity inference using replicator dynamics 
 
The basic principle of replicator dynamics is as follows. Let 
W be a matrix with elements wij corresponding to the 
similarity between ROIi and ROIj. wii is set to zero to avoid 
self connections and wij can be any similarity measure such 
as Spearman’s correlation, as used in this study and in [8] 
for its robustness to the different possible probability 
distributions of the ROI features [16]. Let x be a vector with 
xi representing the degree of membership of ROIi belonging 
to the maximally correlated network (often referred to as the 
dominant network). Replicator dynamics finds the vector x 
that maximizes xTWx with the constraints of xi  0 and xi = 
1 by iteratively applying (3):  
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where k is the iteration number and xi(0) is initialized to 1/N 
(N = number of ROIs) so that all ROIs have equal chances 
of being in the dominant network at the beginning of the 
optimization to avoid any bias. Based on the fundamental 
theorem of natural selection [11], xi(k) is guaranteed to 
converge to a local maximum, where xi’s associated with 
those ROIs that belong to the dominant network will 
increase above 1/N, while other xi’s will decrease below 1/N. 
Therefore, after x stabilizes, the ROIs corresponding to xi > 
1/N are declared members of the dominant network. To 
detect subsequent networks of lower correlation, one can 
remove the ROIs belonging to the previously detected 
networks and repeat the procedures above [8].  

For making group inferences, we need to average the 
wij’s across subjects. However, since our chosen wij does not 
follow a normal distribution, we convert the wij’s to zij using 
Fisher’s z-transform, which is approximately normal [16]: 
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The resulting zij’s are then averaged across subjects, and the 
average wij’s can be obtained by applying the inverse 
Fisher’s z-transform to the average zij’s: 
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The above algorithm provides a simple means for 
identifying functional networks, but a minor drawback is that 
given any arbitrary W, replicator dynamics will still be able 
to find a network. Therefore, we applied replicator dynamics 
to 10,000 sets of randomly generated Gaussian signals, and 
determined the maximum value of xTWx to be approximately 
0.2, above which the detected networks are not likely to be 
artificial. In this paper, all dominant networks presented 
have xTWx exceeding 0.2. 

 
4. RESULTS AND DISCUSSION 

 
In this work, we are interested in comparing the networks 
detected using our recently proposed measures of fMRI 

spatial modulation with traditional mean intensity measures 
as ROI features. Also, we investigated whether, and if so 
how, the composition of the functional networks changes 
with task frequency. The ROI feature time courses were first 
divided into segments based on task frequency as shown in 
Fig. 1(b). Time course segments corresponding to the same 
task frequency were then concatenated.  

Fig. 2 summarizes the results obtained by applying 
replicator dynamics to the different segments of ROI feature 
time courses. Figs. 2(a-c) correspond to slow, medium, and 
fast frequency results obtained with our proposed spatial 
variance time courses J1(t). At slow frequency, the left and 
right PFCs were detected as the dominant network with the 
SMAs being the second most dominant network and the 
ACCs being the third most dominant network. Observing 
regions from the left side of the brain connected to the same 
anatomical structure on the right is not too surprising, since 
they are physically connected through the corpus callosum. 
As we increased the task frequency from slow to medium, 
the left cerebellum, which is part of the ipsilateral cortico-
cerebellar-thalamic loop, was additionally recruited. At the 
fastest frequency, the right SMA became part of the 
dominant network, and the right cerebellum and the left and 
right caudate nuclei were further recruited. The right 
cerebellum is known to be related to visually-guided 
movements and the caudate nuclei are responsible for timing 
of motor movements. Thus, observing recruitments of these 
ROIs at higher frequencies conforms to prior neuroscience 
knowledge. In contrast, Figs. 2(d-f) correspond to the results 
obtained with mean ROI intensity time courses. In general, 
except for the third most dominant network, no frequency 
related changes were detected using mean intensity. 
Considering only the third most dominant network, both the 
left and right caudate nuclei and the thalami were recruited 
at slow frequency, and the caudate nuclei appeared to be 
replaced by the right M1 at medium frequency. At fast 
frequency, the thalami and right M1 were no longer part of 
the network as replaced by the caudate nuclei and left 
putamen, which were members of the slow frequency 
network. These results are rather intriguing, since one would 
expect a gradual change in network composition with 
increasing task frequency. To determine the source of these 
unexpected results, we examined the fourth most dominant 
network and found the bilateral putamen to be in the slow 
frequency network, the caudate nuclei in the medium 
frequency network, and the thalami and right M1 in the fast 
frequency network. Thus, if we consider the union of the 
third and fourth most dominant networks (which had 
comparable degree of correlation), very similar networks 
were in fact detected for all frequencies with mean intensity. 
Hence, spatial modulation appears to be a more sensitive 
ROI feature for detecting frequency related network 
changes, which suggests that functional connectivity is not 
simply governed by intensity changes as traditionally 
believed. 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 2. Functional network detection with replicator dynamics. PUT = putamen, CAU = caudate, THA = thalamus, CER = cerebellum. The 
first and second rows correspond to using spatial variance and mean intensity as ROI features, respectively. The columns correspond to 
slow, medium, and fast frequencies. The level of correlation of the detected networks is coded by colour and number with ROIs in green-1 
being the most correlated, in orange-2 being second most correlated, and in yellow-3 being third most correlated. Spatial variance appears 
to be a more sensitive feature for detecting frequency related network composition changes than mean intensity. 
 

5. CONCLUSIONS 
 

In this paper, we demonstrated, for the first time, that spatial 
modulation of BOLD signals within distinct ROIs can be 
effectively used to infer functional connectivity from fMRI 
data. By applying replicator dynamics to our recently 
proposed fMRI spatial feature time courses, we were able to 
detect frequency related changes in the composition of the 
functional networks, whereas little changes were observed 
with intensity measures. A direct extension would be to 
examine effective connectivity with the proposed spatial 
features, an approach currently being pursued. 
 

6. REFERENCES 
 

[1] R. S. J. Frackowiak, K. J. Friston, C. Frith, R. Dolan, C. J. 
Price, S. Zeki, J. Ashburner, and W. D. Penny, Human Brain 
Function, 2nd ed., Academic Press, 2003.  
[2] K. J. Friston, C. D. Frith, P. F. Liddle, and R. S. Frackowiak, 
"Functional connectivity: the principal-component analysis of large 
(PET) data sets," J. Cereb. Blood Flow Metab., vol. 13, pp. 5-14, 
1993.  
[3] K. J. Friston, C. Buechel, G. R. Fink, J. Morris, E. Rolls, and 
R. J. Dolan, "Psychophysiological and Modulatory Interactions in 
Neuroimaging," Neuroimage, vol. 6, pp. 218-229, 1997.  
[4] B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, 
"Functional connectivity in the motor cortex of resting human 
brain using echo-planar MRI," Magn. Reson. Med., vol. 34, pp. 
537-541, 1995.  
[5] A. Nieto-Castanon, S. S. Ghosh, J. A. Tourville, and F. H. 
Guenther, "Region of interest based analysis of functional imaging 
data," Neuroimage, vol. 19, pp. 1303–1316, 2003.  

[6] Y. Liu, J. H. Gao, M. Liotti, Y. Pu and P. T. Fox, "Temporal 
dissociation of parallel processing in the human subcortical 
outputs," Nature, vol. 400, pp. 364-367, 1999.  
[7] B. Ng, R. Abugharbieh, S. J. Palmer, and M. J. McKeown, 
"Characterizing task-related temporal dynamics of spatial 
activation distributions in fMRI BOLD signals," MICCAI 2007, 
Part I, LNCS 4791, pp. 767-774, 2007. 
[8] G. Lohmann and S. Bohn, "Using replicator dynamics for 
analyzing fMRI data of the human brain," IEEE Trans. Med. 
Imaging, vol. 21, pp. 485-492, 2002.  
[9] J. Neumann, G. Lohmann, J. Derrfuss, and D. Y. von Cramon, 
"Meta-analysis of functional imaging data using replicator 
dynamics," Hum. Brain Mapp., vol. 25, pp. 165-173, 2005.  
[10] J. Neumann, D. Y. von Cramon, B. U. Forstmann, S. Zysset, 
and G. Lohmann, "The parcellation of cortical areas using 
replicator dynamics in fMRI,"  Neuroimage, vol. 32, pp. 208-219, 
2006.  
[11] P. Schuster and K. Sigmund, "Replicator dynamics," J. Theor. 
Biol., vol. 100, pp. 533-538, 1983.  
[12] R. Liao, J. L. Krolik, and M. J. McKeown, "An information-
theoretic criterion for intrasubject alignment of FMRI time series: 
motion corrected independent component analysis," IEEE Trans. 
Med. Imaging, vol. 24, pp. 29-44, 2005.  
[13] C. Rorden and M. Brett, "Stereotaxic display of brain 
lesions," Behav. Neurol., vol. 12, pp. 191-200, 2000.  
[14] J. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of 
the Human Brain: 3-Dimensional Proportional System: An 
Approach to Cerebral Imaging, Thieme, 1988. 
[15] F. A. Sadjadi and E. L. Hall, "Three-dimensional moment 
invariants," IEEE Trans. Pattern Anal. Mach. Intell., vol. 2, pp. 
127-136, 1980.  
[16] B. P. Flannery, W. H. Press, S. A. Teukolsky and W. T. 
Vetterling, "Numerical Recipes in C," Press Syndicate of the 
University of Cambridge, New York, 1992.  

575


